
A Model Checker for Epistemic Hybrid Automata
Using Constraints Logic Programming

Ammar Mohamed1, Rana Mohamed2, Hesham Hefny3
1Department of Computer Science, Arab East Colleges

Riyadh, KSA
Institute of Statistical Studies and Research,

Cairo University
Cairo, Egypt

2,3 Department of Computer Science Institute of Statistical Studies and Research
Cairo University

 Cairo, Egypt

Abstract— In a previous work, we showed how to
formally model systems in epistemic hybrid automata by
extending the definition of hybrid automata with
epistemic notations. Additionally, we presented a formal
specification language to specify the requirements of
those systems which are modeled using epistemic hybrid
automata. In this paper, we present a model checker for
epistemic hybrid automata. As far as we know no
research presented a model checker for epistemic hybrid
automata. The model checker allows us to reason about
the dynamical behaviors of systems as well as the
satisfaction of several epistemic properties. The
proposed model checker is implemented using
mathematical intervals in Constraints logic
programming.

Keywords— Epistemic Hybrid Automata, Epistemic Tree
Logic, Constraint Logic Programming.

I. INTRODUCTION

In a previous work [6], we extended the definition
of reactive [9] systems with knowledge and
introduced the so-called logic Epistemic Hybrid Tree
Logic (EHTL) that combines both the region
Computational Tree [5] and epistemic logic. We used
the underline model of epistemic hybrid automata to
interpret the formulas of EHTL. The underline model
is used to describe the knowledge properties [16] in
addition to quantitative properties [22].

The idea of epistemic hybrid automata (EPH) goes
around how a group of agents interact by sharing their
knowledge using synchronized events. Each agent
takes his decision according to the gained knowledge
from the interacting agents. EPH overcome the
shortages of hybrid automata [19] by allowing agents
to reason about individual knowledge, common
knowledge or distributed knowledge [23]. Broadly
speaking, examining hybrid automata with epistemic
properties forms a challenge, since the implementation
of hybrid automata generates an infinite number of
states [14]. Additionally, with adding knowledge to
reactive systems, you will need to add extra features to
examine the process of knowledge reasoning.

An automatic formal verification technique of
reactive systems [24] is model checking [10]. Model
checker takes a model of a system and specification of
the properties as input and seeks if the properties are
satisfied. Most of the model checkers guarantee the
correctness of the specification of reactive systems in
terms of reachability analysis [13], where a model
checker computes the reachability of the states from
the a start state of a model of a system under
investigation. In [1], [3], [5], the authors presented a
constraint logic programming (CLP) [15] model
checker for hybrid automata. CLP [18] is a suitable
tool for modeling real life multi-agent systems (MAS)
[11] because CLP is a declarative programming
language as well as contains efficient constraints
solvers of various domains. Several formal
verification of reactive systems [8] and hybrid
automata by means of CLP [20] presented. However,
up to our knowledge, no work tried to present a model
checking for EPH.

In summary, the primary contribution of this paper
is to present a novel model of Epistemic Hybrid
automata by means of constraint logic programming
(CLP). Additionally, the CLP model allows us not
only to model epistemic behaviors of multi-agent
systems, but also to check various properties by means
of the reachability analysis

The rest of paper is organized as follows. In section
II we discuss related work; in section III we present
the proposed Epistemic Hybrid Automata. In section,
V we define Epistemic Hybrid Automata case study.
In section IV we define Epistemic Hybrid Tree Logic.
In section VI we introduce the knowledge and
reachability analysis. Finally, we conclude in section
VII by presenting the conclusion.

II. RELATED WORK

No model checker presented for knowledge and
hybrid automata, but some researchers presented a
model checkers for knowledge with time [17] that

Ammar Mohamed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 125-131

www.ijcsit.com 125

interpreted using interpreted systems as in [21]
authors proposed MCK, ‘Model Checking
Knowledge’, which is a model checker for real
temporal epistemic logic. The system composed of a
set of agents communicating in an environment, the
interaction runs according to a specific protocol, and
actions are taken according to it. Agents gain
knowledge according to the current actions and clock
value. Actions cause a change in the epistemic state of
the system. Also in [11], [12] MCMAS, for Model
Checking Multi-Agent Systems, is a model checker
similar to MCK, For Knowledge and temporal logic, it
allows to specify LTL and CTL. Paper [7] presented
Bounded model checking which tests the presented
formula against counterexamples. Other papers
presented CLP as a model checker language to verify
hybrid automata using arithmetic intervals as in [20]
they provided a rigorous approach to modelling,
simulating, and analyzing Hybrid Systems using CLP,
also in [1], [3] ,[4], [5] authors provided a model
checker using CLP, arithmetic intervals and they
verify the system using reachability analysis. Also, [2]
Authors presented a CLP for hierarchical hybrid
automata. However, their work cannot be used to check
epistemic logic with hybrid automata.

III. PROPOSED EPISTEMIC HYBRID AUTOMATA

In this section, we present new formal model
named epistemic hybrid automata (EPH) [2], where
each EPH is an agent (ܪܲܧ	 ∈ ८ሻ, where	८ is the set
of all agents, and each EPH have his own knowledge.
In the following EPH components:

A. . Epistemic Hybrid Automaton Components (EPH):

Epistemic hybrid automaton (EPH) is a higher class
of hybrid automata, which is consisting of the HA and
knowledge requirements, each EPH represents an
agent and each EPH is a tuple of:

ܪ	ܲܧ ൌ
	ሺॿ, ܳ, ,݈݁݃݀݁ݓ݊݇ ,݈ܽܿܮ ,ݐ݊ܥ ,ݐݑܣ ,ܧ 	,݉ݑܬ
,ݐ݁ݏܴ݁ ,ݐ݊݁ݒܧ ∼ாு, ாܰு)

 ॿ: a finite set of real values that represent the
continuous dynamics, where
 ॿ ൌ ሼݔଵ, ,ଶݔ . . . , .ሽݔ

 ܳ: is a finite set of locations representing the
location of each agent, |ܳ| ൌ ݊ is the total
number of locations for epistemic hybrid
automaton.

 ߪ :݈ܽܿܮ → is a function that returns theݍ
current location of a state.

 ݈݇݊݁݃݀݁ݓ: ܳ → a function which	݁݃݀ܭ
assigns to each location ݍ ∈ ܳ a knowledge.

 ݐݑܣ: ܳ → μሺॿሻ, is a function that assigns
automata constraint ݐݑܣሺݍሻ to each location
ݍ ∈ ܳ.

 Cont: ܳ → 	൫ॿܥ ∪	ॿሶ ൯ is a labeling function
that assigns to each location ݍ ∈ ܳ continuous
constraint ݐ݊ܥሺݍሻ.

 ܧ ⊆ is a finite set of discrete transition ܳݔܳ
among control locations. Each transition
∋ (ଶݍ,ଵݍ) ଵ, and targetݍ has a source location ܧ
location ݍଶ.

 Jump: ܧ → μሺॿሻ a function assign to each
transition ݁ ∈ ሺ݁ሻ, which݉ݑܬ a constraint ܧ
must hold on fire.

 Reset: ॿ → ॿ is a mapping function which
assigns a real value to each variable, which
reset the variables before the control of ܪܲܧ
goes from location ݍଵ to location ݍଶ .

 Event: is a function that assigns an event
 .ሺ݁ሻ to each transitionݐ݊݁ݒܧ

 ∼ாுis an epistemic (accessibility) relation for
⊇ ாு∽ ܪܲܧ ܪܲܧ ଶ for each agentߗݔଵߗ ∈ ,ܣ
if ∀ߪ ∈ ,ଵߗ ߪ∀ ∈ ,ଶߗ ሻߪሺ݈݈ܽܿ ൌ ,൯ߪ൫݈݈ܽܿ
and
ߪ ൌ ሺݍ, ,ݒ ,݁݃݀ܭ ሻݐ ≡
,ݍ=൫ߪ ,ݒ ,݁݃݀ܭ .൯ݐ

 ாܰு : is the agent knowledge update function
ܳ → ݁݃݀ܭ ∪ ߱, whereܪܲܧ ∈ .ܣ

B. Syntax

To understand the components of EPH we need
first to understand some concepts, so in the following,
we introduce some definitions.

Definition -1 (Agent Local Epistemic State)

The state of agent ݉ ∈ ८ is given by ߪ
 ൌ

ሺݍ, ,ݒ ݇݀݃݁
, ݍ ሻ, whereݐ ∈ ݒ ,ܳ is a valuation of

real variables, ݈݇݊݁݃݀݁ݓሺݍ
ሻ = ݇݀݃݁

 is the
knowledge of agent ݉ at state ݅, ݐ is the time variable,
1 ݅ ݊ and between each two states an epistemic
relation. Epistemic state for agent changes when an
agent takes a decision by firing an event.

Definition 2 (Epistemic Relation)

Let ߁ ⊆ ८ be a subset of agents, ݉ ∈ ८ is an
agent, ߪ

, ߪାଵ
 ߪ

 ൌ ሺݍ, ,ݒ ݇݀݃݁
, ,ሻݐ ାଵߪ

 ൌ
ሺݍାଵ, ,ାଵݒ ݇݀݃݁ାଵ

 , ାଵሻare two states and let ∼ isݐ
an epistemic relation between the two states.

Where ߪ
 ∼ ߪାଵ

 if :

 ݈ܽܿܮሺߪሻ ൌ .ାଵሻߪሺ݈ܽܿܮ
 ݒ ≡ .ାଵݒ
 ݇݀݃݁

 ൌ ݇݀݃݁ାଵ
 .

 ݐ,	ݐାଵ ∈ ሾݐଵ, .ଶሿݐ
ݒ ≡ ߪ)ݐݑܣ ାଵ Whenݒ

) = ߪ)ݐݑܣାଵ
) and

,ݒ ߪ)ݐݑܣ ାଵsatisfiesݒ
) and ݐ,ݐାଵ ∈ ሾݐଵ, ଶሿ meansݐ

that ݐ,ݐାଵ within the same interval.

Where the epistemic relation for common and

distributed knowledge is as follows:

Common knowledge epistemic relation
 ∼௰

 = ሺ∪∈௰∼ሻା.
Distributed knowledge epistemic relation

Ammar Mohamed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 125-131

www.ijcsit.com 126

∼௰
 = ∩∈௰∼ .

The relation here is an equivalence relation.

Definition-3 (Shared Knowledge)

Let	݉, ∈ ८, are two agents, and
ߪ
,ߪାଵ

 ߪ,
,ߪାଵ

 are four states and ܽ ∈ which ݐ݊݁ݒܧ
is a synchronous event between agent ݉ and .

ߪ

ܽ, ߮ଵ
⟶
ݐ
ାଵߪ
 , and ߪ

ܽ, ߮ଶ
⟶
ݐ
ାଵߪ

Where	݈݇݊݁݃݀݁ݓሺߪ
ሻ ൌ ߮ଵ	and

ߪ൫݈݁݃݀݁ݓ݊݇
൯ ൌ ߮ଶ are the shared knowledge

from agent ݉ and , so ݈݇݊݁݃݀݁ݓሺߪାଵ
 ሻ =

ߪሺ݈݁݃݀݁ݓ݊݇
ሻ ∪ ߮ଶ, and ݈݇݊݁݃݀݁ݓ൫ߪାଵ

 ൯ =
ߪሺ݈݁݃݀݁ݓ݊݇

ሻ ∪ ߮ଵ.

Definition-4 (Transitional Semantics)

A transition between two epistemic states
ଵߪ
=ሺݍଵ, ,ଵݒ ݇݀݃݁ଵ

, ଶߪ ଵሻ andݐ
 =ሺݍଶ, ,ଶݒ ݇݀݃݁ଶ

, ଶሻݐ

have two types discrete transition	ߪଵ

,ሺ݁ሻݐ݊݁ݒܧ ߮

⟶
ݐ

ଶߪ

and continuous transition.

1) Discrete Transition: it occurs when we
have	ሺݍଵ, ∋ ଶሻݍ ⫤ ଵݒ , ଶݐ = ଵݐ ,ܧ ,ሺ݁ሻ݉ݑܬ
ܰ(ݍଵ) = ݈݁݃݀݁ݓ݊ܭሺݍଵሻ ∪ ߮ଵ, ܰ(ݍଶ) =
 ଶሻݍሺ݈݁݃݀݁ݓ݊ܭ ଶሻ ∪ ߮ଶ whereݍሺ݈݁݃݀݁ݓ݊ܭ
ଶݒ ଵሻ ∪ ߮ଵ andݍሺ݈݁݃݀݁ݓ݊ܭ = ⊨ ,(ଶݍ)ݐݑܣ
such that ߮ଵ , ߮ଶ is shared knowledge, ݒଶ is the
valuation coming from Reset(e, ܺ), in this case
Event(e) occurs.

2) Continuous Transition: it occurs when we
have	qଵ = qଶ, (tଶ −tଵ) > 0 is the time elapsed
at location qଵ and there is a differentiable
function f with f ⊨∗ Cont(qଵ), N୫(tଵ)
=Knowledgeሺtଵሻ ∪ φ,
N୫(tଶሻ	=	Knowledgeሺtଶሻ where
Knowledgeሺtଶሻ = Knowledgeሺtଵሻ ∪ φ, f (tଵ)
⊨ vଵ , f (tଶ) ⊨ vଵ	such that φ is shared
knowledge and for all t∈ [tଵ , tଶ], fሺtሻ ⊨
Auto(qଵ).

Definition -5: Execution Path

EPH implementation generates two types of
behaviors continuous behavior that generates finite
number of states named a path interval and discrete
behavior, in the following we define path interval and
run of EPH:
A. Path Interval: Path interval is a sub sequence of

local epistemic states Ω= (ߪାଵ
 ାߪ ,... ,

) ⊆ ,ߩ
where ߩ is EPH path. Path interval is used to
represent the evolution of variables at the same
location for a period of time. Path interval is a
tuple of Ω	 ൌ 	 ሺݍ, ܸ, ,݁݃݀ܭ ܶ), where ሼ݁݃݀ܭሽ is
the knowledge at the end of the interval,
knowledge remains the same during the path
interval, ܸ is the tuple of path interval valuation of

the variables during the time interval ܶ and ݐାଵ
 ܶ ݐାat location ݍ.

B. Run: A run of EPH consists of a set of path
intervals between each two path intervals a
transition, the run is represented as follows:

ܪܲܧߩ ൌ Ω,
ܽଵ, ߱ଵ
⟶
ଵݐ

, Ωଵ,
ܽଶ, ߱ଶ
⟶
ଶݐ

, . . . ,
ܽ, ߱
⟶
ݐ
, where ܽ

∈ is an event, that generated before the ݐ݊݁ݒ݁
agent goes to Ωାଵ, and ߱ is the shared
knowledge coming from other agents.

IV. EPISTEMIC HYBRID TREE LOGIC (EHTL)

Now we are going to present a new logic called
epistemic hybrid tree logic that composes of
region computation tree logic and epistemic logic,
EHTL is interpreted over all possible generated
path intervals from the epistemic hybrid
automata, where agent move from location to
another according to the timed constraints and
shared knowledge. Now we will declare the
meaning of ticks [5].

C. Ticks

Tick ॻ is set of non-negative real variables and
μሺॻሻ a set of automata constraints over ॻ. The

valuation of ॻ is a function ℘ : ॻ → ܴஹ, given

∈that π μሺॻሻ, we write ℘ ⊨ .ߨ if ℘ satisfies	ߨ

1) EHTL Syntax

Let ॿ be a set of real variables, ॻ be a set of non-
negative real variables disjoint from ܺ, μሺॿሻ and

μሺॻሻbe sets of automata constraints with free

variables from ॿ, ॻ. ∆ be a set of atomic
proposition denoting the locations, Event be a set
of atomic proposition disjoint from ∆ and ८ be a
set of all agents.

a) Formulas of EHTL:

߮:≔ μ|߮ଵ|ܽ| ∧ ߮ଶ|߮|ݔ. ሺ߮ଵ∀|ߨ|߮ ⊔ ߮ଶሻ|∃ሺ߮ଵ
⊔ ߮ଶሻ|݇߮|ܥ௰߮|ܦ௰߮.

Where ∈ ∆, μ ∈ μሺॿሻ, ܽ ∈ ,ݕ ,ݐ݊݁ݒܧ ݔ ∈ ॻ, ݉ ∈
८, ߁ ⊆ ८, ߮ଵ , ߮ଶ are EHTL formulas and the logical
connectives ∧, → have their usual meaning. We have
some abbreviations:

∃ ◊ ߮ ≡ ∃ሺ݁ݑݎݐ ⊔ ߮ሻ
∀ ◊ ߮ ≡ ∀ሺ݁ݑݎݐ ⊔ ߮ሻ	

∃ᇝ߮ ≡ ∀ ◊ ߮∀ᇝ߮ ≡ ∃ ◊ ߮	
߮ܭ ≡ ܭ߮.

V.

VI. EPISTEMIC HYBRID AUTOMATA CASE

STUDY

Epistemic logic has achieved such prominence
attention in the mid’s of 1980 since they discovered
that epistemic logics could be given a natural
interpretation according to the states of agents, so our

Ammar Mohamed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 125-131

www.ijcsit.com 127

case study aims to study the epistemic state for each
agent. Where agent takes his decision based on the
available knowledge. We improved the case study
presented in [3] to examine how agent takes decision
depending on the received knowledge of the
interacting agents, the scenario talks about 4
agents, ¨truck¨ responsible for delivering the items to
specific destination with a specific percentage of
decayed items, ¨cargo¨ responsible for assigning the
delivery mission to a specific truck with a specific
price and sending knowledge about the changing of
price with time passing so the truck takes the decision
of finishing the transportation mission or request help
from the provider to send another truck to deliver the
items, ¨disturbance ¨responsible for observing the
occurrence of errors, finally “decay” ıs plugged into
the truck and is responsible for observing errors and
the putrefied items, and alarm the truck in case of
errors.

Figure 1- Case Study

A. CLP Representation
In this section, we declare how to encode the

implementation of epistemic hybrid automata for the
previous scenario in CLP, the reason of choosing CLP
that it is enriched with a lot of domain solver as
interval domain (IC) that is used to represent the
continuous evolution of automata and symbolic
domain to represent fired events. The code is
implemented using eclipse prolog [18]. Our model
follows the definition of EPH, where each automaton
is defined by the automaton location, the real
variables, time and the agent knowledge.

%%EpistautomatonName(+Location,?Varia
ble0,+Variables,?Time0,+Time,?initKno
w,?Event)

EpistautomatonName(Location,Variable0
,Variables,Time0,Time,initKnow,Event)
:-C1(Variables)is (Variable0) *

(Time-Time0), C2(auto),Time$>Time0,
initKnow=[automaton knowledge∪shared
knowledge] ,Event & :: event.

Where EpistautomatonName is the name of the

epistemic automaton, Location is the location that
epistemic automaton sited in, Variable0 is the initial
values that represent the continuous evolution of
variables over time, Time0 is the initial time for each
initial value, Time is the evolving time, Variables is
the list of real values, C1, C2 is the constraints over
the real variables, initKnow is the knowledge of
automaton at the beginning of the location, the
knowledge of the automata remains unchangeable
during the continuous evolution and Events is the
event that supposed to be fired during the run. As an
example of automaton definition:

cargo(init3,[Z0],[Z],T0,T,Know,Events):-
Z$=Z0,T$=T0,calcTp(T,Price),
Know=[Price],Event & :: event.

The query here calls function calcTp to calculate price
depending on the passing time and set the price as
cargo knowledge. EPH has two types of behaviors
continuous behavior that represents the evolution of
variables and knowledge over time and discrete
behavior that represents how automaton moves from a
location to another, we define the relation behavior
that capture how system evolves over continuous and
discrete behavior.

%%%behavior(+EpistAutomatonName,+State,-
Nextstate,+T0,+Time,+Shared,+Know1,-
Know2,?Event)

*Continuous:

behavior(EpistAutomatonName(State,Start-
state,Know),(State,Newstartstate,Know),
Shared,T0,T,Event):-
continuous(EpistAutomatonName(State,
Startstate,Know),(State,Newstartstate,
Know),Shared,T0,T,Event).

*Discrete

behavior(EpistAutomatonName,(State,
Value1,Know),(Nextstate,Value2,Know1),
Shared,T0,T,Event):-
discrete(EpistAutomatonName,State,
Nextstate,Value1,Value2,T0,T,Shared,Know
,Know1,Event).

During the continuous evolution, an infinite number of
states is generated at the same location with different
values of variables, different timing variables and the
same knowledge along the evolution, while at the
discrete step the knowledge is updated from state to
another by concatenating the knowledge of the first

Ammar Mohamed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 125-131

www.ijcsit.com 128

state with the shared knowledge coming from other
agents.

%discrete(+EpisAutomaton,+State1,-
State2,?Shared,+Kn,-Kn2,+IntTime,-
Time,-Event)

discrete(EpistAutomatonName,FirstLoc,Se
cLoc,FirstVar,ResetVar,T0,T,SharedKnow,
FirstKnow,UpdatedKnow,Event):-
Event&::events,Event&=Eventname,
EpistAutomatonName(FirstLoc,[FirstVar],
[Var],T0,TT,FirstKnow,Event),jump(Var),
Reset(ResetVar),conc(FirstKnow,
SharedKnow,UpdatedKnow).

When the discrete step occurs it means that an event
has fired, where Event &::events means that the value
of Event is within the domain of event, UpdatedKnow
is the knowledge of the FirstLoc and the shared
knowledge coming when a synchronized event is fired.
Now we need to check if we have a synchronized
event.

%check((+Epist1Event,?Shared1,+Kn1),
(+Epist2Event,?Shared2,+Kn2))

check((EpistAutomaton1Event,Shared1,Kno
wledge1),(EpistAutomaton2Event,Shared2,
Knowledge2),(EpistAutomaton3Event,Share
d3,Knowledge3),(EpistAutomaton4Event,Sh
ared4,Knowledge4)):-
Event1&=Event2,conc(Knowledge1,Knowledg
e1,Shared1),Shared2=Shared1,Event3 &=
Event4,conc(Knowledge3,Knowledge4,Share
d3), Shared4 =Shared3.

The previous query examines if EpistAutomaton-
1Event and EpistAutomaton2Event are two
synchronized events, in this case, the shared
knowledge for Automaton 1, 2 will be Knowledge1
and Knowledge2.
The continuous evolution shows how automaton
variables are evolved at the same location with the
same knowledge till a jump condition occurs, and it is
represented as follows:

% continuous (+EpisAutomaton,(+State1,
+Var0,+Know),(+State1,-Var,+Know),
?Shared,+IntTime,-Time,-Event)

continuous(EpistAutomatonName,(State,
Var0,Know),(State,Var,Know),_,Time0,Time
,Event):- Event &::events, Event &\ =
accept, Event & \ = otherEvents,
EpistAutomatonName(State,[Var0],[Var],T0
,TT,Know,_),getbounds(TT,TTl,TT2),
getbounds(Time,Tl,T2),Time2 is T2-Tl,
TT2-TTl>Time2,
EpistAutomatonName(State,[Var0],[Var],
Time0,T2,Know,_).

The most important implementation part in epistemic
hybrid automata code is the part that allows

automatons to interact with each other and share
knowledge, we call it the drive:
drive(_,_,_,_,_,0,[]):- !.
drive((disturbance,S1,Y0,Know),(deca
y,S2,D0,Know1),(cargo,S3,X0,Know2),(
truck,S4,Z0,Know3),
Starttime,Steps,[((disturbance,S1,Kn
ow),(decay,S2,Know1),(cargo,S3,Know2
),(truck,S4,Know3),Time,Event,D)|R])
:-
disturbance(S1,[Y0],[Y],Starttime,Ty
,Know,Event1),
decay(S2,[D0],[D],Starttime,Td,Know1
,Event2),
cargo(S3,[X0],[X],Starttime,Tx,Know2
,Event3),
truck(S4,[Z0],[Z],Starttime,Tz,Know3
,Event4),
Ty $=Td, Ty $=Tx, Ty $=Tz,Time $=Ty,

check((Event1,Shared1,Know),(Event2,
Shared2,Know1),(Event3,Shared3,Know2
),(Event4,Shared4,Know3)),

Event1 &= Event2, Event1 &= Event3,
Event1 &= Event4, Event&= Event1,

behavior(disturbance,(S1,Y0,Know),(N
extS1,YY0,Knowa),Shared1,Starttime,T
y,Event),
behavior(decay,(S2,D0,Know1),(NextS2
,DD0,Knowb),Shared2,Starttime,Td,Eve
nt),
behavior(cargo,(S3,X0,Know2),(NextS3
,XX0,Knowc),Shared3,Starttime,TX,Eve
nt),
behavior(truck,(S4,Z0,Know3),(NextS4
,ZZ0,Knowd),Shared4,Starttime,Tz,Eve
nt),

get_bounds(Time,_,Newstarttime),
write("timeinterval"),
writeln(Time),
write(S1),write(":"),write(S2),write
(":"),write(S3),write(":"),
writeln(S4),write(Y),write(":"),
write(D),write(":"),write(X),
write(":"), writeln(Z),
set(Know,Knowh),set(Know1,Knowh1),se
t(Know2,Knowh2),set(Know3,Knowh3),
%remove redundant knowledge

Ammar Mohamed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 125-131

www.ijcsit.com 129

write("disturbanceknow"),
write(Knowh),write(":"),write("deca
y
know"),write(Knowh1),write(":"),wri
te("cargo know"),write(Knowh2),
write(":"),write("truck know"),
writeln(Knowh3),write("Event :"),wr
iteln(Event),write("Timex="),
writeln(Tx),writeln("-----------"),
Steps > 0,Steps1 is Steps -1,
drive((disturbance,NextS1,YY0,Knowa
),(decay,NextS2,DD0,Knowb),(cargo,N
extS3,XX0,Knowc),(truck,NextS4,ZZ0,
Knowd),Newstarttime,Steps1,R).

At the drive part, it starts with the definition of each
automaton with its initial variables, timing, and
knowledge, then checks the event that may fire from
each state to set the shared knowledge for each
epistemic automaton, after that the epistemic
automatons start to interact by calling behavior. At the
end of each state, the model checks if there is any
redundant knowledge and removes it by calling
function set. At last, we print the values of each
variable, timing, and knowledge for each automaton.
The output of the run shows the reached states for
each epistemic automaton from the initial state with
the knowledge of each agent and their shared
knowledge.

VII. KNOWLEDGE AND REACHABILITY

ANALYSIS

A. Reachability

Reachability [13] in EHTL is achieved when an
agent knows that a certain state can be reached from
the initial state.

ݐ݅݊݅ ⟶ ∃ ◊ ݇߮

?-
reached((disturbance,S1),(decay,S2)
, (cargo,S3),(truck,S4),S):-
drive((disturbance,init1,0,K1),
(decay,init2,0,K2),(cargo,init3,0,K
3),(truck,init4,0,K4),0,S,Output),
append(List,[((disturbance,S1,_),
(decay,S2,_),(cargo,S3,_),(truck,S4
,_),_,_,_)|_],Output).

B. Knowledge Properties in CLP
At [2] knowledge has some properties defined using
EHTL as positive introspection and negative
introspection, they can also be defined using CLP.
Positive introspection states that when the agent
knows something, then he knows that he knows that
thing, which means knowing of your knowledge, you
can check if an agent knows that he knows a specific
knowledge at a specific state if this knowledge in the
agent knowledge base.

∃ ◊ ݇߮ ⟶ ∃ ◊ ݇݇߮

We represent it in CLP as follows:

?- knowsTknows(disturbance,S1,X,ST):-
drive((disturbance,init1,0,K1),
(decay,init2,0,K2),(cargo,init3,0,K3),
(truck,init4,0,K4),0,ST,R),
append(First,[((disturbance,S1,KN),_,_,_
,_,_)|_],R),(member(X,KN)->
write("disturbance knows that it knows
"),write(X)).

The previous query checks the knowledge of the agent
at a certain state, we use append and member prolog
predicates. The second knowledge property is
negative introspection which means the knowing of
your ignorance. in EHTL:

∃ ◊ ݇߮ ⟶ ∃ ◊ ݇݇߮

it can be represented in CLP as:

?- knowsdknows(disturbance,S1,X,ST):-
drive((disturbance,init1,0,K1),(decay,in
it2,0,K2),(cargo,init3,0,K3),(truck,init
4,0,K4),0,ST,R),
append(First,[((disturbance,S1,KN),_,_,_
,_,_)|_],R),(\+ member(X,KN) ->
write("disturbance knows that it doesn't
knows "),write(X)).

This property can be checked by checking the
knowledge of the agent at a certain state, if not
exists then he knows that he doesn’t know. Both
properties present a powerful tool to eliminate
skepticism since you know your knowledge and
ignorance.

Knowledge becomes a common knowledge when it
is shared with each agent participating in the
system, the following CLP code checks if
knowledge X is a common knowledge for
disturbance, decay, cargo and truck at time T.

?-
commonknow(X,(disturbance,decay,cargo,
truck),T):-
drive((disturbance,S1,Y0,Know),(decay,S2
,D0,Know1),(cargo,S3,X0,Know2),(truck,S4
,Z0,Know3), 0,6,R),
append(First,[((disturbance,_,KX),(decay
,_,KN),(cargo,_,KY),(truck,_,KZ),T,_)|_]
,M),append(M,_,R),(member(X,KX),member(X
,KN),member(X,KY),member(X,KZ) ->
write(X)),write(" is Common Knowledge
Between Agents").

Distributed knowledge means that a specific
knowledge is distributed over agents, which means
after collecting the knowledge of the distributed agent
we will know the willing piece of knowledge. Let’s

Ammar Mohamed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 125-131

www.ijcsit.com 130

imagine that the decay notice anonymous signal says
“crowd” and cargo knows that crowd means that price
will be decreased to 1000 but cargo doesn’t know the
signal yet, so price = 1000 is a distributed knowledge
over cargo and decay The following CLP code shows
how to check distributed knowledge.

distributed(1000,cargo,decay):-
drive((disturbance,S1,Y0,Know),
(decay,S2,D0,Know1),(cargo,S3,X0,Kno
w2),(truck,S4,Z0,Know3),
0,4,R),append(Know1,_,NK),
member(crowdis1000,Know2),member(cro
wd,NK),member((_,(decay,decay,NK),_,
,,_),R).

VIII. CONCLUSION
The verification of multi-agents that have epistemic states is
a critical task, especially when Agents situated in safety
critical applications. So they need a model checker to check
their epistemic state at each step of the system, to examine
the changing of agent knowledge and it’s continuous
dynamic behavior. This paper presented a model checker
using constraint logic programming (CLP) to check agent
behavior based on quantitative and knowledge analysis. The
paper applied epistemic hybrid tree logic (EHTL) that
verified using epistemic hybrid automata (EPH) in a
planning case study and checked the behavior of the
interacted agents using the CLP model, to check if it follows
the definition of EPH

REFERENCES

[1] A. Mohammed, and U. Furbach, Using CLP to model hybrid
systems, Proceedings of Annual ERCIM Workshop on Constraint
Solving Programming (CSCLP2008). 2008b,
URL: http://pst.istc.cnr.it/CSCLP08/program
[2] A. Mohammed and F. Stolzenburg, Using constraint logic
programming for modeling and verifying hierarchical hybrid
automata, Technical Report 6/2009, Department of Computer
Science, Universit¨at Koblenz–Landau, 2009..
[3] A. Mohammed and U. Furbach, From Reactive to Deliberative
Multiagent Planning. MSVVEIS. pages(67–75). Springer. 2009.
[4] A. Mohammed, and U. Furbach, Multi-agent systems: Modeling
and verification using hybrid automata. Springer. 2010.
[5] A. Mohammed, and U.Furbach, MAS: qualitative and
quantitative reasoning. Programming Multi-Agent Systems.
pages(114 -132). Springer. 2012.
[6] A. Mohammed, R. Mohamed and H. Hefny “Epistemic Hybrid
Tree Logic”, ICCTA 2015, pages(21-27), conference proceeding,
2015.
[7] A. Lomuscio and W. Penczek, , Bounded model checking for
knowledge and real time, Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems,
pages(165—172), ACM, 2005.
[8] A. Pnueli, Applications of temporal logic to the specification
and verification of reactive systems: a survey of current trends,
Springer ,1986.
[9] D. Harel, and A. Pnueli, . On the development of reactive
systems. Logics and models of concurrent systems
 pages (477–498), Springer,1985.
[10] E.Clarke, O. Grumberg, and D.Peled,. Model checking,
Springer,1999.
[11] F. Raimondi and A. Lomuscio. Automatic verification of
deontic properties of multi-agent systems. In Proceedings of
DEON04, pages(228–242). Springer Verlag, 2004.
[12] F. Raimondi and A. Lomuscio. Verification of multiagent
systems via ordered binary decision diagrams: An algorithm and its
implementation. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multi- Agent Systems
(AAMAS 04), pages(630–637)., IEEE Computer Society 2004.
[13] G. Lafferriere, G. J Pappas and S. Yovine, Reachability
computation for linear hybrid systems, Proceedings of the 14th
IFAC World Congress, Pages(7—12), 1999.
[14] H. Lin, and P., J. Antsaklis, Hybrid dynamical systems: An
introduction to control and verification. Found. Trends Syst.
Control. volume(1). number(1). pages(1–172). 2014.
[15] J. Jaffar and M. J Maher Constraint logic programming: A
survey, The journal of logic programming, Volume (19), Pages
(503—581), Elsevier, 1994.
[16] J-J Ch Meyer, and W. Van Der H., Epistemic logic for AI and
computer science. volume(41). Cambridge University Press. 2004.
[17] J. van Benthem, and E. Pacuit, Temporal Logics of Agency.
Journal of Logic, Language and Information. volume(19).
number(4). pages(389–393). Springer, 2010.
 [18] K. R. Apt. and M. Wallace. Constraint Logic Programming
Using Eclipse. Cambridge University Press, Cambridge, UK, 2007.
[19] T., A. Henzinger, The theory of hybrid automata. Springer,
2000.
[20] T. Hickey and D. Wittenberg, Rigorous modeling of hybrid
systems using interval arithmetic constraints, International
Workshop on Hybrid Systems Computation and Control,
pages(402–416), Springer,2004,.
[21] P. Gammie and R. van der Meyden. MCK: Model checking the
logic of knowledge. In R. Alur and D. Peled, editors, Proceedings of
the 16thInternational Conference on Computer Aided Verification
(CAV 2004), P(479–483). 2004.
[22] R. Alur, and T. A. Henzinger,. Logics and models of real time:
A survey. Real-Time: Theory in Practice. pages(74–106). 1992.
[23] W.,Verbrugge, Epistemic logic: A survey. Game theory
and applications. volume(8). pages(53). Nova Science Publishers.
Springer. 2002.
 [24] Z. Manna and A. Pnueli Temporal verification of reactive
systems: safety, Springer Science and Business Media. 2012,

Ammar Mohamed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 125-131

www.ijcsit.com 131

