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Abstract— In a previous work, we showed how to
formally model systems in epistemic hybrid automata by 
extending the definition of hybrid automata with 
epistemic notations. Additionally, we presented a formal 
specification language to specify the requirements of 
those systems which are modeled using epistemic hybrid 
automata. In this paper, we present a model checker for 
epistemic hybrid automata. As far as we know no 
research presented a model checker for epistemic hybrid 
automata. The model checker allows us to reason about 
the dynamical behaviors of systems as well as the 
satisfaction of several epistemic properties. The 
proposed model checker is implemented using 
mathematical intervals in Constraints logic 
programming. 
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I. INTRODUCTION

In a previous work [6], we extended the definition 
of reactive [9] systems with knowledge and 
introduced the so-called logic Epistemic Hybrid Tree 
Logic (EHTL) that combines both the region 
Computational Tree [5] and epistemic logic. We used 
the underline model of epistemic hybrid automata to 
interpret the formulas of EHTL. The underline model 
is used to describe the knowledge properties [16] in 
addition to quantitative properties [22].  

The idea of epistemic hybrid automata (EPH) goes 
around how a group of agents interact by sharing their 
knowledge using synchronized events. Each agent 
takes his decision according to the gained knowledge 
from the interacting agents. EPH overcome the 
shortages of hybrid automata [19] by allowing agents 
to reason about individual knowledge, common 
knowledge or distributed knowledge [23]. Broadly 
speaking, examining hybrid automata with epistemic 
properties forms a challenge, since the implementation 
of hybrid automata generates an infinite number of 
states [14]. Additionally, with adding knowledge to 
reactive systems, you will need to add extra features to 
examine the process of knowledge reasoning.  

An automatic formal verification technique of 
reactive systems [24] is model checking [10]. Model 
checker takes a model of a system and specification of 
the properties as input and seeks if the properties are 
satisfied.  Most of the model checkers guarantee the 
correctness of the specification of reactive systems in 
terms of reachability analysis [13], where  a model 
checker computes the  reachability of the states from 
the a start state of a model of a system under 
investigation. In [1], [3], [5], the authors presented a 
constraint logic programming (CLP) [15] model 
checker for hybrid automata. CLP [18] is a suitable 
tool for modeling real life multi-agent systems (MAS) 
[11] because CLP is a declarative programming
language as well as contains efficient constraints
solvers of various domains. Several formal
verification of reactive systems [8] and hybrid
automata by means of CLP [20] presented. However,
up to our knowledge, no work tried to present a model
checking for EPH.

In summary, the primary contribution of this paper 
is to present a novel model of Epistemic Hybrid 
automata by means of constraint logic programming 
(CLP). Additionally, the CLP model allows us not 
only to model epistemic behaviors of multi-agent 
systems, but also to check various properties by means 
of the reachability analysis  

The rest of paper is organized as follows. In section 
II we discuss related work; in section III we present 
the proposed Epistemic Hybrid Automata. In section, 
V we define Epistemic Hybrid Automata case study. 
In section IV we define Epistemic Hybrid Tree Logic. 
In section VI we introduce the knowledge and 
reachability analysis. Finally, we conclude in section 
VII by presenting the conclusion. 

II. RELATED WORK

No model checker presented for knowledge and 
hybrid automata, but some researchers presented a 
model checkers for knowledge with time [17] that 
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interpreted using interpreted systems as in [21] 
authors proposed MCK, ‘Model Checking 
Knowledge’, which is a model checker for real 
temporal epistemic logic. The system composed of a 
set of agents communicating in an environment, the 
interaction runs according to a specific protocol, and 
actions are taken according to it. Agents gain 
knowledge according to the current actions and clock 
value. Actions cause a change in the epistemic state of 
the system. Also in [11], [12] MCMAS, for Model 
Checking Multi-Agent Systems, is a model checker 
similar to MCK, For Knowledge and temporal logic, it 
allows to specify LTL and CTL. Paper [7] presented 
Bounded model checking which tests the presented 
formula against counterexamples. Other papers 
presented CLP as a model checker language to verify 
hybrid automata using arithmetic intervals as in [20] 
they provided a rigorous approach to modelling, 
simulating, and analyzing Hybrid Systems using CLP, 
also in [1], [3] ,[4], [5] authors provided a model 
checker using CLP, arithmetic intervals and they 
verify the system using reachability analysis. Also, [2] 
Authors presented a CLP for hierarchical hybrid 
automata. However, their work cannot be used to check 
epistemic logic with hybrid automata. 

III. PROPOSED EPISTEMIC HYBRID AUTOMATA 

In this section, we present new formal model 
named epistemic hybrid automata (EPH) [2], where 
each EPH is an agent (ܪܲܧ	 ∈ ८ሻ, where	८ is the set 
of all agents, and each EPH have his own knowledge. 
In the following EPH components: 

A. . Epistemic Hybrid Automaton Components (EPH): 

Epistemic hybrid automaton (EPH) is a higher class 
of hybrid automata, which is consisting of the HA and 
knowledge requirements, each EPH represents an 
agent and each EPH is a tuple of: 
 
ܪ	ܲܧ ൌ 
	ሺॿ, ܳ, ,݈݁݃݀݁ݓ݊݇ ,݈ܽܿܮ ,ݐ݊ܥ ,ݐݑܣ ,ܧ  	,݉ݑܬ
,ݐ݁ݏܴ݁ ,ݐ݊݁ݒܧ ∼ாு, ாܰு	) 

 ॿ: a finite set of real values that represent the 
continuous dynamics, where 
 ॿ ൌ ሼݔଵ, ,ଶݔ . . . ,  .ሽݔ

 ܳ: is a finite set of locations representing the 
location of each agent, |ܳ| ൌ ݊ is the total 
number of locations for epistemic hybrid 
automaton. 

 ߪ :݈ܽܿܮ →   is a function that returns theݍ
current location of a state. 

 ݈݇݊݁݃݀݁ݓ: ܳ →  a function which	݁݃݀ܭ
assigns to each location ݍ ∈ ܳ a knowledge. 

 ݐݑܣ: ܳ → μሺॿሻ, is a function that assigns 
automata constraint ݐݑܣሺݍሻ to each location 
ݍ ∈ ܳ. 

 Cont: ܳ → 	൫ॿܥ ∪	ॿሶ ൯ is a labeling function 
that assigns to each location ݍ ∈ ܳ continuous 
constraint ݐ݊ܥሺݍሻ. 

 ܧ ⊆  is a finite set of discrete transition ܳݔܳ
among control locations. Each transition 
∋ (ଶݍ,ଵݍ)  ଵ, and targetݍ has a source location ܧ
location ݍଶ. 

 Jump: ܧ → μሺॿሻ a function assign to each 
transition ݁ ∈  ሺ݁ሻ, which݉ݑܬ a constraint ܧ
must hold on fire. 

 Reset: ॿ → ॿ is a mapping function which 
assigns a real value to each variable, which 
reset the variables before the control of ܪܲܧ 
goes from location ݍଵ to location ݍଶ . 

 Event: is a function that assigns an event 
 .ሺ݁ሻ to each transitionݐ݊݁ݒܧ

 ∼ாுis an epistemic (accessibility) relation for 
⊇ ாு∽  ܪܲܧ ܪܲܧ ଶ for each agentߗݔଵߗ ∈  ,ܣ
if ∀ߪ ∈ ,ଵߗ ߪ∀ ∈ ,ଶߗ ሻߪሺ݈݈ܽܿ ൌ  ,൯ߪ൫݈݈ܽܿ
and 
ߪ ൌ ሺݍ, ,ݒ ,݁݃݀ܭ ሻݐ ≡
,ݍ=൫ߪ ,ݒ ,݁݃݀ܭ  .൯ݐ

 ாܰு : is the agent knowledge update function 
ܳ → ݁݃݀ܭ ∪ ߱, whereܪܲܧ ∈  .ܣ

B. Syntax 

To understand the components of EPH we need 
first to understand some concepts, so in the following, 
we introduce some definitions. 
 
Definition -1 (Agent Local Epistemic State) 

The state of agent ݉ ∈ ८ is given by ߪ
 ൌ

ሺݍ, ,ݒ ݇݀݃݁
, ݍ ሻ, whereݐ ∈ ݒ ,ܳ  is a valuation of 

real variables, ݈݇݊݁݃݀݁ݓሺݍ
ሻ = ݇݀݃݁

 is the 
knowledge of agent ݉ at state ݅, ݐ is the time variable, 
1  ݅  ݊ and between each two states an epistemic 
relation. Epistemic state for agent changes when an 
agent takes a decision by firing an event. 
 
Definition 2 (Epistemic Relation) 

Let ߁ ⊆ ८ be a subset of agents, ݉ ∈ ८ is an 
agent, ߪ

, ߪାଵ
 ߪ  

 ൌ ሺݍ, ,ݒ ݇݀݃݁
, ,ሻݐ ାଵߪ

 ൌ
ሺݍାଵ, ,ାଵݒ ݇݀݃݁ାଵ

 ,  ାଵሻare two states and let ∼ isݐ
an epistemic relation between the two states. 
 

Where ߪ
 ∼ ߪାଵ

  if : 

 ݈ܽܿܮሺߪሻ ൌ  .ାଵሻߪሺ݈ܽܿܮ
 ݒ ≡  .ାଵݒ
 ݇݀݃݁

 ൌ ݇݀݃݁ାଵ
 . 

 ݐ,	ݐାଵ ∈ ሾݐଵ,  .ଶሿݐ
ݒ ≡ ߪ)ݐݑܣ ାଵ Whenݒ

) = ߪ)ݐݑܣାଵ
 ) and 

,ݒ ߪ)ݐݑܣ ାଵsatisfiesݒ
) and ݐ,ݐାଵ ∈ ሾݐଵ,  ଶሿ meansݐ

that ݐ,ݐାଵ within the same interval. 

Where the epistemic relation for common and 

distributed knowledge is as follows: 

Common knowledge epistemic relation  
 ∼௰

 = ሺ∪∈௰∼ሻା. 
Distributed knowledge epistemic relation   
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∼௰
 = ∩∈௰∼ . 

The relation here is an equivalence relation. 
 
Definition-3 (Shared Knowledge) 

Let	݉,  ∈ ८, are two agents, and 
ߪ
,ߪାଵ

 ߪ,
,ߪାଵ

  are four states and ܽ ∈  which ݐ݊݁ݒܧ
is a synchronous event between agent ݉ and . 

ߪ

ܽ, ߮ଵ
⟶
ݐ
ାଵߪ
 , and   ߪ


ܽ, ߮ଶ
⟶
ݐ
ାଵߪ
  

Where	݈݇݊݁݃݀݁ݓሺߪ
ሻ ൌ ߮ଵ	and 

ߪ൫݈݁݃݀݁ݓ݊݇
൯ ൌ ߮ଶ are the shared knowledge 

from agent ݉ and , so ݈݇݊݁݃݀݁ݓሺߪାଵ
 ሻ = 

ߪሺ݈݁݃݀݁ݓ݊݇
ሻ ∪ ߮ଶ, and ݈݇݊݁݃݀݁ݓ൫ߪାଵ

 ൯ = 
ߪሺ݈݁݃݀݁ݓ݊݇

ሻ ∪ ߮ଵ. 
 
Definition-4 (Transitional Semantics) 

A transition between two epistemic states 
ଵߪ
=ሺݍଵ, ,ଵݒ ݇݀݃݁ଵ

, ଶߪ ଵሻ andݐ
 =ሺݍଶ, ,ଶݒ ݇݀݃݁ଶ

,  ଶሻݐ

have two types discrete transition	ߪଵ

,ሺ݁ሻݐ݊݁ݒܧ ߮

⟶
ݐ

ଶߪ
 

and continuous transition. 
 

1) Discrete Transition: it occurs when we 
have	ሺݍଵ, ∋ ଶሻݍ ⫤ ଵݒ , ଶݐ = ଵݐ ,ܧ  ,ሺ݁ሻ݉ݑܬ
ܰ(ݍଵ ) = ݈݁݃݀݁ݓ݊ܭሺݍଵሻ ∪ ߮ଵ, ܰ(ݍଶ ) = 
   ଶሻݍሺ݈݁݃݀݁ݓ݊ܭ  ଶሻ ∪ ߮ଶ whereݍሺ݈݁݃݀݁ݓ݊ܭ
ଶݒ ଵሻ  ∪ ߮ଵ andݍሺ݈݁݃݀݁ݓ݊ܭ = ⊨  ,(ଶݍ)ݐݑܣ
such that ߮ଵ , ߮ଶ is shared knowledge, ݒଶ is the 
valuation coming from Reset(e, ܺ), in this case 
Event(e) occurs. 
 

2) Continuous Transition: it occurs when we 
have	qଵ = qଶ, (tଶ −tଵ ) > 0 is the time elapsed 
at location qଵ and there is a differentiable 
function f with f ⊨∗ Cont(qଵ), N୫(tଵ) 
=Knowledgeሺtଵሻ  ∪ φ, 
N୫(tଶሻ	=	Knowledgeሺtଶሻ where 
Knowledgeሺtଶሻ = Knowledgeሺtଵሻ ∪ φ, f (tଵ ) 
⊨ vଵ , f (tଶ ) ⊨ vଵ	such that φ is shared 
knowledge and for all t∈ [tଵ , tଶ ], fሺtሻ ⊨ 
Auto(qଵ).  

 
Definition -5: Execution Path 

EPH implementation generates two types of 
behaviors continuous behavior that generates finite 
number of states named a path interval and discrete 
behavior, in the following we define path interval and 
run of EPH: 
A. Path Interval: Path interval is a sub sequence of 

local epistemic states Ω= (ߪାଵ
 ାߪ ,... , 

 ) ⊆  ,ߩ
where ߩ  is EPH path. Path interval is used to 
represent the evolution of variables at the same 
location for a period of time. Path interval is a 
tuple of Ω	 ൌ 	 ሺݍ, ܸ, ,݁݃݀ܭ ܶ), where ሼ݁݃݀ܭሽ is 
the knowledge at the end of the interval, 
knowledge remains the same during the path 
interval, ܸ is the tuple of path interval valuation of 

the variables during the time interval ܶ and ݐାଵ 
 ܶ  ݐାat location ݍ. 

B. Run: A run of EPH consists of a set of path 
intervals between each two path intervals a 
transition, the run is represented as follows: 

ܪܲܧߩ ൌ Ω,
ܽଵ, ߱ଵ
⟶
ଵݐ

, Ωଵ,
ܽଶ, ߱ଶ
⟶
ଶݐ

, . . . ,
ܽ, ߱
⟶
ݐ
, where ܽ 

∈  is an event, that generated before the ݐ݊݁ݒ݁
agent goes to Ωାଵ, and ߱ is the shared 
knowledge coming from other agents. 

IV. EPISTEMIC HYBRID TREE LOGIC (EHTL) 

Now we are going to present a new logic called 
epistemic hybrid tree logic that composes of 
region computation tree logic and epistemic logic, 
EHTL is interpreted over all possible generated 
path intervals from the epistemic hybrid 
automata, where agent move from location to 
another according to the timed constraints and 
shared knowledge. Now we will declare the 
meaning of ticks [5]. 

C. Ticks 

Tick ॻ is set of non-negative real variables and 
μሺॻሻ a set of automata constraints over ॻ. The 

valuation of ॻ is a function ℘ : ॻ → ܴஹ, given 

∈that π  μሺॻሻ, we write ℘ ⊨  .ߨ if ℘ satisfies	ߨ

1) EHTL Syntax 

Let ॿ be a set of real variables, ॻ be a set of non-
negative real variables disjoint from ܺ, μሺॿሻ and 

μሺॻሻbe sets of automata constraints with free 

variables from ॿ, ॻ. ∆ be a set of atomic 
proposition denoting the locations, Event be a set 
of atomic proposition disjoint from ∆ and ८ be a 
set of all agents. 

a) Formulas of EHTL: 

߮:≔ μ|߮ଵ|ܽ| ∧ ߮ଶ|߮|ݔ. ሺ߮ଵ∀|ߨ|߮ ⊔ ߮ଶሻ|∃ሺ߮ଵ
⊔ ߮ଶሻ|݇߮|ܥ௰߮|ܦ௰߮. 

Where ∈ ∆, μ ∈ μሺॿሻ, ܽ ∈ ,ݕ ,ݐ݊݁ݒܧ ݔ ∈ ॻ, ݉ ∈ 
८, ߁ ⊆ ८, ߮ଵ , ߮ଶ are EHTL formulas and the logical 
connectives ∧, → have their usual meaning. We have 
some abbreviations: 

∃ ◊ ߮ ≡ ∃ሺ݁ݑݎݐ ⊔ ߮ሻ 
∀ ◊ ߮ ≡ ∀ሺ݁ݑݎݐ ⊔ ߮ሻ	

∃ᇝ߮ ≡ ∀ ◊ ߮∀ᇝ߮ ≡ ∃ ◊ ߮	
߮ܭ ≡ ܭ߮. 

V.  

VI. EPISTEMIC HYBRID AUTOMATA CASE 

STUDY 

Epistemic logic has achieved such prominence 
attention in the mid’s of 1980 since they discovered 
that epistemic logics could be given a natural 
interpretation according to the states of agents, so our 
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case study aims to study the epistemic state for each 
agent. Where agent takes his decision based on the 
available knowledge. We improved the case study 
presented in [3] to examine how agent takes decision 
depending on the received knowledge of the 
interacting agents, the scenario talks about 4 
agents, ¨truck¨ responsible for delivering the items to 
specific destination with a specific percentage of 
decayed items, ¨cargo¨ responsible for assigning the 
delivery mission to a specific truck with a specific 
price and sending knowledge about the changing of 
price with time passing so the truck takes the decision 
of finishing the transportation mission or request help 
from the provider to send another truck to deliver the 
items, ¨disturbance ¨responsible for observing the 
occurrence of errors, finally “decay” ıs plugged into 
the truck and is responsible for observing errors and 
the putrefied items, and alarm the truck in case of 
errors. 

 
Figure 1- Case Study 

 
A. CLP Representation 
In this section, we declare how to encode the 

implementation of epistemic hybrid automata for the 
previous scenario in CLP, the reason of choosing CLP 
that it is enriched with a lot of domain solver as 
interval domain (IC) that is used to represent the 
continuous evolution of automata and symbolic 
domain to represent fired events. The code is 
implemented using eclipse prolog [18]. Our model 
follows the definition of EPH, where each automaton 
is defined by the automaton location, the real 
variables, time and the agent knowledge. 
 

%%EpistautomatonName(+Location,?Varia
ble0,+Variables,?Time0,+Time,?initKno
w,?Event) 
 
EpistautomatonName(Location,Variable0
,Variables,Time0,Time,initKnow,Event)
:-C1(Variables)is (Variable0) * 

(Time-Time0), C2(auto),Time$>Time0, 
initKnow=[automaton knowledge∪shared 
knowledge] ,Event & :: event. 

 
Where EpistautomatonName is the name of the 

epistemic automaton, Location is the location that 
epistemic automaton sited in, Variable0 is the initial 
values that represent the continuous evolution of 
variables over time, Time0 is the initial time for each 
initial value, Time is the evolving time, Variables is 
the list of real values, C1, C2 is the constraints over 
the real variables, initKnow is the knowledge of 
automaton at the beginning of the location, the 
knowledge of the automata remains unchangeable 
during the continuous evolution and Events is the 
event that supposed to be fired during the run. As an 
example of automaton definition: 

 
cargo(init3,[Z0],[Z],T0,T,Know,Events):- 
Z$=Z0,T$=T0,calcTp(T,Price), 
Know=[Price],Event & :: event. 

 
The query here calls function calcTp to calculate price 
depending on the passing time and set the price as 
cargo knowledge. EPH has two types of behaviors 
continuous behavior that represents the evolution of 
variables and knowledge over time and discrete 
behavior that represents how automaton moves from a 
location to another, we define the relation behavior 
that capture how system evolves over continuous and 
discrete behavior. 
 
 
%%%behavior(+EpistAutomatonName,+State,-
Nextstate,+T0,+Time,+Shared,+Know1,-
Know2,?Event) 
 
*Continuous: 
 
behavior(EpistAutomatonName(State,Start- 
state,Know),(State,Newstartstate,Know), 
Shared,T0,T,Event):- 
continuous(EpistAutomatonName(State, 
Startstate,Know),(State,Newstartstate, 
Know),Shared,T0,T,Event). 
 
*Discrete 
 
behavior(EpistAutomatonName,(State, 
Value1,Know),(Nextstate,Value2,Know1), 
Shared,T0,T,Event):- 
discrete(EpistAutomatonName,State, 
Nextstate,Value1,Value2,T0,T,Shared,Know
,Know1,Event). 
 
During the continuous evolution, an infinite number of 
states is generated at the same location with different 
values of variables, different timing variables and the 
same knowledge along the evolution, while at the 
discrete step the knowledge is updated from state to 
another by concatenating the knowledge of the first 
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state with the shared knowledge coming from other 
agents. 
 
%discrete(+EpisAutomaton,+State1,-
State2,?Shared,+Kn,-Kn2,+IntTime,-
Time,-Event) 
 
discrete(EpistAutomatonName,FirstLoc,Se
cLoc,FirstVar,ResetVar,T0,T,SharedKnow, 
FirstKnow,UpdatedKnow,Event):- 
Event&::events,Event&=Eventname, 
EpistAutomatonName(FirstLoc,[FirstVar], 
[Var],T0,TT,FirstKnow,Event),jump(Var), 
Reset(ResetVar),conc(FirstKnow, 
SharedKnow,UpdatedKnow). 
 
When the discrete step occurs it means that an event 
has fired, where Event &::events means that the value 
of Event is within the domain of event, UpdatedKnow 
is the knowledge of the FirstLoc and the shared 
knowledge coming when a synchronized event is fired. 
Now we need to check if we have a synchronized 
event. 
 
%check((+Epist1Event,?Shared1,+Kn1), 
(+Epist2Event,?Shared2,+Kn2)) 
 
check((EpistAutomaton1Event,Shared1,Kno
wledge1),(EpistAutomaton2Event,Shared2, 
Knowledge2),(EpistAutomaton3Event,Share
d3,Knowledge3),(EpistAutomaton4Event,Sh
ared4,Knowledge4)):-
Event1&=Event2,conc(Knowledge1,Knowledg
e1,Shared1),Shared2=Shared1,Event3 &= 
Event4,conc(Knowledge3,Knowledge4,Share
d3), Shared4 =Shared3. 
 
The previous query examines if EpistAutomaton- 
1Event and EpistAutomaton2Event are two 
synchronized events, in this case, the shared 
knowledge for Automaton 1, 2 will be Knowledge1 
and Knowledge2.  
The continuous evolution shows how automaton 
variables are evolved at the same location with the 
same knowledge till a jump condition occurs, and it is 
represented as follows: 
 
% continuous (+EpisAutomaton,(+State1, 
+Var0,+Know),(+State1,-Var,+Know), 
?Shared,+IntTime,-Time,-Event) 
 
continuous(EpistAutomatonName,(State, 
Var0,Know),(State,Var,Know),_,Time0,Time
,Event):- Event &::events, Event &\ = 
accept, Event & \ = otherEvents, 
EpistAutomatonName(State,[Var0],[Var],T0
,TT,Know,_),getbounds(TT,TTl,TT2), 
getbounds(Time,Tl,T2),Time2 is T2-Tl, 
TT2-TTl>Time2, 
EpistAutomatonName(State,[Var0],[Var], 
Time0,T2,Know,_). 
 
The most important implementation part in epistemic 
hybrid automata code is the part that allows 

automatons to interact with each other and share 
knowledge, we call it the drive: 
drive(_,_,_,_,_,0,[]):- !. 
drive((disturbance,S1,Y0,Know),(deca
y,S2,D0,Know1),(cargo,S3,X0,Know2),(
truck,S4,Z0,Know3), 
Starttime,Steps,[((disturbance,S1,Kn
ow),(decay,S2,Know1),(cargo,S3,Know2
),(truck,S4,Know3),Time,Event,D)|R])
:-      
disturbance(S1,[Y0],[Y],Starttime,Ty
,Know,Event1), 
decay(S2,[D0],[D],Starttime,Td,Know1
,Event2), 
cargo(S3,[X0],[X],Starttime,Tx,Know2
,Event3), 
truck(S4,[Z0],[Z],Starttime,Tz,Know3
,Event4), 
Ty $=Td, Ty $=Tx, Ty $=Tz,Time $=Ty, 
 
check((Event1,Shared1,Know),(Event2,
Shared2,Know1),(Event3,Shared3,Know2
),(Event4,Shared4,Know3)), 
  
Event1 &= Event2, Event1 &= Event3, 
Event1 &= Event4, Event&= Event1, 
 
behavior(disturbance,(S1,Y0,Know),(N
extS1,YY0,Knowa),Shared1,Starttime,T
y,Event), 
behavior(decay,(S2,D0,Know1),(NextS2
,DD0,Knowb),Shared2,Starttime,Td,Eve
nt), 
behavior(cargo,(S3,X0,Know2),(NextS3
,XX0,Knowc),Shared3,Starttime,TX,Eve
nt), 
behavior(truck,(S4,Z0,Know3),(NextS4
,ZZ0,Knowd),Shared4,Starttime,Tz,Eve
nt), 
   
get_bounds(Time,_,Newstarttime), 
write("timeinterval"), 
writeln(Time), 
write(S1),write(":"),write(S2),write
(":"),write(S3),write(":"), 
writeln(S4),write(Y),write(":"), 
write(D),write(":"),write(X), 
write(":"), writeln(Z), 
set(Know,Knowh),set(Know1,Knowh1),se
t(Know2,Knowh2),set(Know3,Knowh3),  
%remove redundant knowledge 
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write("disturbanceknow"), 
write(Knowh),write(":"),write("deca
y 
know"),write(Knowh1),write(":"),wri
te("cargo know"),write(Knowh2), 
write(":"),write("truck know"), 
writeln(Knowh3),write("Event :"),wr
iteln(Event),write("Timex="), 
writeln(Tx),writeln("-----------"), 
Steps > 0,Steps1 is Steps -1, 
drive((disturbance,NextS1,YY0,Knowa
),(decay,NextS2,DD0,Knowb),(cargo,N
extS3,XX0,Knowc),(truck,NextS4,ZZ0,
Knowd),Newstarttime,Steps1,R). 

 
At the drive part, it starts with the definition of each 
automaton with its initial variables, timing, and 
knowledge, then checks the event that may fire from 
each state to set the shared knowledge for each 
epistemic automaton, after that the epistemic 
automatons start to interact by calling behavior. At the 
end of each state, the model checks if there is any 
redundant knowledge and removes it by calling 
function set. At last, we print the values of each 
variable, timing, and knowledge for each automaton. 
The output of the run shows the reached states for 
each epistemic automaton from the initial state with 
the knowledge of each agent and their shared 
knowledge.  

VII. KNOWLEDGE AND REACHABILITY 

ANALYSIS 

A. Reachability 

Reachability [13] in EHTL is achieved when an 
agent knows that a certain state can be reached from 
the initial state. 

ݐ݅݊݅ ⟶ ∃ ◊ ݇߮ 

?-
reached((disturbance,S1),(decay,S2)
, (cargo,S3),(truck,S4),S):- 
drive((disturbance,init1,0,K1), 
(decay,init2,0,K2),(cargo,init3,0,K
3),(truck,init4,0,K4),0,S,Output), 
append(List,[((disturbance,S1,_), 
(decay,S2,_),(cargo,S3,_),(truck,S4
,_),_,_,_)|_],Output). 

 

B. Knowledge Properties in CLP 
At [2] knowledge has some properties defined using 
EHTL as positive introspection and negative 
introspection, they can also be defined using CLP. 
Positive introspection states that when the agent 
knows something, then he knows that he knows that 
thing, which means knowing of your knowledge, you 
can check if an agent knows that he knows a specific 
knowledge at a specific state if this knowledge in the 
agent knowledge base. 

  
∃ ◊ ݇߮ ⟶ ∃ ◊ ݇݇߮ 

 
We represent it in CLP as follows: 
 
?- knowsTknows(disturbance,S1,X,ST):-
drive((disturbance,init1,0,K1), 
(decay,init2,0,K2),(cargo,init3,0,K3), 
(truck,init4,0,K4),0,ST,R), 
append(First,[((disturbance,S1,KN),_,_,_
,_,_)|_],R),(member(X,KN)-> 
write("disturbance knows that it knows 
"),write(X)). 
 
The previous query checks the knowledge of the agent 
at a certain state, we use append and member prolog 
predicates. The second knowledge property is 
negative introspection which means the knowing of 
your ignorance. in EHTL: 

∃ ◊ ݇߮ ⟶ ∃ ◊ ݇݇߮ 
 
it can be represented in CLP as: 
 
?- knowsdknows(disturbance,S1,X,ST):-
drive((disturbance,init1,0,K1),(decay,in
it2,0,K2),(cargo,init3,0,K3),(truck,init
4,0,K4),0,ST,R), 
append(First,[((disturbance,S1,KN),_,_,_
,_,_)|_],R),( \+ member(X,KN) -> 
write("disturbance knows that it doesn't 
knows "),write(X)). 
 

This property can be checked by checking the 
knowledge of the agent at a certain state, if not 
exists then he knows that he doesn’t know. Both 
properties present a powerful tool to eliminate 
skepticism since you know your knowledge and 
ignorance.  

Knowledge becomes a common knowledge when it 
is shared with each agent participating in the 
system, the following CLP code checks if 
knowledge X is a common knowledge for 
disturbance, decay, cargo and truck at time T. 

 
?- 
commonknow(X,(disturbance,decay,cargo, 
truck),T):-
drive((disturbance,S1,Y0,Know),(decay,S2
,D0,Know1),(cargo,S3,X0,Know2),(truck,S4
,Z0,Know3), 0,6,R), 
append(First,[((disturbance,_,KX),(decay
,_,KN),(cargo,_,KY),(truck,_,KZ),T,_)|_]
,M),append(M,_,R),(member(X,KX),member(X
,KN),member(X,KY),member(X,KZ) -> 
write(X)),write("  is Common Knowledge 
Between Agents"). 

 
Distributed knowledge means that a specific 
knowledge is distributed over agents, which means 
after collecting the knowledge of the distributed agent 
we will know the willing piece of knowledge. Let’s 
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imagine that the decay notice anonymous signal says 
“crowd” and cargo knows that crowd means that price 
will be decreased to 1000 but cargo doesn’t know the 
signal yet, so price = 1000 is a distributed knowledge 
over cargo and decay The following CLP code shows 
how to check distributed knowledge.  
 
distributed(1000,cargo,decay):-
drive((disturbance,S1,Y0,Know), 
(decay,S2,D0,Know1),(cargo,S3,X0,Kno
w2),(truck,S4,Z0,Know3), 
0,4,R),append(Know1,_,NK), 
member(crowdis1000,Know2),member(cro
wd,NK),member((_,(decay,decay,NK),_,
_,_,_),R). 
 

VIII. CONCLUSION 
The verification of multi-agents that have epistemic states is 
a critical task, especially when Agents situated in safety 
critical applications. So they need a model checker to check 
their epistemic state at each step of the system, to examine 
the changing of agent knowledge and it’s continuous 
dynamic behavior. This paper presented a model checker 
using constraint logic programming (CLP) to check agent 
behavior based on quantitative and knowledge analysis. The 
paper applied epistemic hybrid tree logic (EHTL) that 
verified using epistemic hybrid automata (EPH) in a 
planning case study and checked the behavior of the 
interacted agents using the CLP model, to check if it follows 
the definition of EPH 
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